Most Complex Regular Right-Ideal Languages
نویسندگان
چکیده
A right ideal is a language L over an alphabet Σ that satisfies L = LΣ∗. We show that there exists a stream (sequence) (Rn | n > 3) of regular right ideal languages, where Rn has n left quotients and is most complex under the following measures of complexity: the state complexities of the left quotients, the number of atoms (intersections of complemented and uncomplemented left quotients), the state complexities of the atoms, the size of the syntactic semigroup, the state complexities of the operations of reversal, star, and product, and the state complexities of all binary boolean operations. In that sense, this stream of right ideals is a universal witness.
منابع مشابه
Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages
We study the state complexity of binary operations on regular languages over different alphabets. It is known that if L′m and Ln are languages of state complexities m and n, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on L′m and Ln is mn, and that of product (concatenation) is m2 n − 2n−1. In contrast to this, we show that if L′m and L...
متن کاملComplexity of Prefix-Convex Regular Languages
A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ∈ Σ, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefixclosed, and prefix-free languages. We study complexity properties of prefix-convex regular languages. In particular, we find the quotient/state complexity of boolean operations, product (concatenation), star, and reversal,...
متن کاملMost Complex Regular Ideals
A right ideal (left ideal, two-sided ideal) is a non-empty language L over an alphabet Σ such that L = LΣ∗ (L = Σ∗L, L = Σ∗LΣ∗). Let k = 3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (Ln | n > k) of right, left, and two-sided regular ideals, where Ln has quotient complexity (state complexity) n, such that Ln is most complex in its class und...
متن کاملCHARACTERIZATION OF REGULAR $Gamma$−SEMIGROUPS THROUGH FUZZY IDEALS
Notions of strongly regular, regular and left(right) regular $Gamma$−semigroupsare introduced. Equivalent conditions are obtained through fuzzy notion for a$Gamma$−semigroup to be either strongly regular or regular or left regular.
متن کاملRegular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets
Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper, the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...
متن کامل